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Abstract. Using the supersymmetric quantum mechanics, we investigate the wave function-sensitive prop-
erties of the supersymmetric potentials which have received a lot of attention in the literature recently.
We show that a superdeep potential and its phase-equivalent shallow-partner potential give very similar
rms radius values for the weakly bound systems such as the deuteron and 11Be nuclei. Although the cor-
responding eigenstates differ in the node-number, our investigation on the 11Be(p, d)10Be single nucleon
halo transfer reaction at 35 MeV show that also other physical quantities such as the cross-section angular
distributions calculated using these wave functions reflect the nodal structure rather weakly. This lends
support to two nearly equivalent treatments of the Pauli principle.

PACS. 03.65.Fd Algebraic methods – 24.10.-i Nuclear reaction models and methods – 25.60.Je Transfer
reactions

1 Introduction

The long-standing dichotomy of choosing a shallow or
deep effective local potential to describe nucleus-nucleus
elastic scattering was greatly clarified by Baye [1], who
demonstrated that in scattering, for all practical purposes,
these two kinds of potential [2,3] are phase-equivalent
supersymmetric partner potentials of each other. Super-
symmetric quantum mechanics allows one to transform a
Hamiltonian to its partner such that they possess identi-
cal spectra or differ at most from each other by having
the lowest eigenstate eliminated in its partner’s spectrum
[4]. Repeated application of the supersymmetric transform
could yield a Hamiltonian which has a prescribed number
of eigenstates less than the starting Hamiltonian. By the
same token, a supersymmetric transform can also add an
eigenstate of the desired energy to the starting spectrum.
The supersymmetric transform, apart from eliminating
the lowest eigenstate, induces in the first instance a change
in the phase shifts of the continuum states of the starting
spectrum. Baye [1] showed that by a judicious choice of
repeated supersymmetric transforms, the partner Hamil-
tonian can be made to be phase-equivalent to the original
one. Thus, in the case of α-α scattering, where the start-
ing Hamiltonian has a deep effective local potential [3]
known to possess bound states which are unphysical be-
cause of the Pauli principle, Baye eliminated these unphys-
ical states by successive supersymmetric transform while
preserving the phase equivalence. In the course of this pro-
cess, the original potential is transformed to be repulsive
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and singular at small distance in order to preserve the en-
ergy behavior of the phase shifts. This resulting potential
presents a shallow attractive part at intermediate range.
Moreover, the supersymmetric transforms are performed
for each angular momentum (�) separately. Therefore, at
the final stage, a set of shallow, energy-independent and
�-dependent effective local potentials is obtained which is
completely phase-equivalent to the original deep, energy-
independent and �-independent potential. The set of shal-
low potentials bears a remarkable resemblance to the �-
dependent α-α potentials documented in the literature
[2].

Such ambiguous choice in the nature of the poten-
tial to describe nucleus-nucleus elastic scattering is found
not only in α-α but also in many other systems. For
example, α +16O and α +40C seem best described by
deep potentials while 12C +12C and 16O +16O by both
deep and shallow potentials [5]. This dual picture of the
nucleus-nucleus interaction arises most probably because
the many-body description of the system has been simpli-
fied in different ways to a two-body interaction between
two structureless particles. For the analysis of elastic scat-
tering, such drastic difference in the character of the po-
tentials is immaterial since only phase shifts are required
and these potentials are phase-shift equivalent or in the
main so. However, when one has to choose one of these
potentials to be used in nuclear-structure studies in which
wave functions are explicitly involved, the implication of a
deep or shallow potential may be immense. The supersym-
metric procedure produces two sets of wave functions for
weakly bound systems, which coincide at large distances
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but differ at small distances by the additional node ap-
pearing inside the core by use of the deep potential. There-
fore, it is important to have a quantitative criterium, such
as the radius and cross-section angular distributions cal-
culations, to distinguish which potential has the correct
wave function-sensitive properties.

These deep and shallow potentials were used in-
dependently by Baye et al. and Liu [6] to calculate
bremsstrahlung emission in possible nucleus-nucleus col-
lisions. The calculations seemed to indicate that while
the bremsstrahlung cross-sections from resonating-group
method and the deep potential resemble each other, those
of the shallow potential are distinctly different. Hence it
was concluded that the deep potential is to be preferred
over its shallow partner if wave function-sensitive proper-
ties are important.

Recently Dijk et al. [7], and Ridikas and his co-workers
[7], have separately shown that a superdeep potential and
its supersymmetric partner give very similar rms radius
values for the model deuteron, and one-neutron halo sys-
tems (considering 11Be nucleus), respectively. In the work
of Ridikas et al. it was also stated that other physical
quantities, which are more sensitive to the behavior of the
radial wave functions in the nuclear interior, such as tran-
sition probabilities obtained by the deep potential and its
phase equivalent partner, reflect the nodal structure rather
weakly.

In order to complete our discussion, we repeat these
calculations at some extent, considering a transfer reac-
tion, 11Be(p,d)10Be, involving the weakly bound deuteron
and single nucleon-halo 11Be nuclei which are well suited
for studying the consequence of different wave functions
from the deep and reconstructed phase equivalent shallow
potentials on reaction observables. Current experimental
activity in the area of light-neutron rich and drip-line nu-
clei now dictates the rapid development of calculable the-
oretical models for reactions and scattering of effective
few-body systems. Hence, there is an increasing general
interest in supersymmetric potentials in this context. Our
results are therefore contributions to the discussion in this
subject — an investigation in a relatively unexplored area
of the quantitative consequence of the supersymmetric po-
tentials.

We begin with a brief sketch of the general method in
section 2, where we also introduce a two-parameter, deep,
shape invariant two-body potential used throughout the
present calculations. In sections 3 and 4, we discuss the
application of the method to the deuteron and 11Be nu-
clei, respectively, giving the characteristic properties of the
constructed phase-equivalent two-body potentials, and the
connection between the exclusion of deep-lying Pauli for-
bidden bound states from some potential and supersym-
metry is reviewed in the light of the calculation results.
Section 5 discusses the 11Be(p,d)10Be reaction calcula-
tions in terms of the supersymmetric partner potentials.
Finally section 6 contains a summary and the conclusion.

2 Supersymmetric quantum mechanics

Supersymmetric quantum mechanics [8] and its connec-
tion to the factorization method [9] have been extensively
investigated [10]. Since the ground state wave function
Ψ (n=0) for a bound system has no nodes, it can be written
as

Ψ (n=0)(r) α exp(−
√
2µ
h̄

∫
W (r)dr) , (1)

where µ is the reduced mass of the system considered and
W is the superpotential.

Introducing the operators

B̂ =W (r) +
i√
2µ

p̂ , B̂+ = W (r)− i√
2µ

p̂ , (2)

the Hamiltonian can be easily factorized

Ĥ − E(n=0) = B̂+B̂ , (3)

where E(n=0) is the ground-state energy. Since the ground-
state wave function satisfies the condition

B̂|Ψ (n=0)〉 = 0 , (4)

the supersymmetric partner Hamiltonians (Hm, m =
1, 2, ...)

Ĥ1 = B̂+B̂ , Ĥ2 = B̂B̂+ (5)

have the same energy spectra except the ground-state of

Ĥ1, which has no corresponding state in the spectra of
ˆ

H.
The corresponding supersymmetric partner potentials are
given by

V1(r) = [W (r)]2 − h̄√
2µ

dW
dr

,

V2(r) = [W (r)]2 +
h̄√
2µ

dW
dr

. (6)

It was shown that a subset of the potentials for which
the Schrödinger equations are exactly solvable share an
integrability condition called shape invariance [11]. The
partner potentials of eq. (6) are called shape invariant if
they satisfy the condition

V2(r; a1) = V1(r; a2) +R(a1) , (7)

where a1,2 are a set of parameters that specify space-
independent properties of the potentials (such as strength,
range, and diffuseness), a2 is a function of a1, and the re-
mainder R(a1) is independent of r.

An iterative procedure within the supersymmetric
quantum mechanics framework for building the partner
of a given potential admitting the same eigenvalues ex-
cept for that of the missing ground-state was proposed by
Baye [1] on the basis of a general procedure due to Suku-
mar [4], [12]. The method relies on a factorization prop-
erty of the Hamiltonian, and makes the (exact) construc-
tion of the partner potential starting from the original
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potential ground-state wave function possible. It actually
requires two steps, the intermediate potential (V2) having
the same negative energy spectrum for a bound system as
the original potential (V1), except for the ground-state of
the latter, but a different phase shift; V2(r) is given by

V2(r) = V1(r)− 2
h̄2

2µ
d2

dr2
lnΨ1 , (8)

where Ψ1(E
(n=0)
1 ) denotes the original ground-state wave

function. The second step provides V3(r), the final phase-
equivalent potential (PEP), as

V3(r) = V1(r)− 2
h̄2

2µ
d2

dr2
ln

[
Ψ1(E

(n=0)
1 )Ψ2(E

(n=0)
1 )

]
, (9)

where Ψ2 stands for the wave function at the same energy
E

(n=0)
1 , but calculated with the intermediate potential V2.

Equation (9) can also be reduced to the form

V3(r) = V1(r)−2
h̄2

2µ
d2

dr2

{
ln

∫ r

0

[
Ψ1(E

(n=0)
1 , r′)

]2

dr′
}
. (10)

Elimination of more than one state is accomplished by
iterating this two-step procedure.

2.1 A two-parameter superdeep potential

In ref. [13], the on-shell equivalence of the deep quantum-
chromodynamically motivated realistic nucleon-nucleon
interaction proposed by Kukulin et al. [14] with more
conventional repulsive-core forces has been investigated
by eliminating its unphysical deeply bound states, while
preserving its scattering properties and the binding en-
ergy of the deuteron. Using the spirit of this work, and
of ref. [7], here we use an alternative superdeep potential.
As a simple, physically interesting example, consider the
potential

V (r) = −V0 sech2βr . (11)

Potentials of this shape can be generated from the su-
perpotential [15],

W (r) = A tanhβr, A > 0 . (12)

In fact, using eq. (6), the supersymmetric partner poten-
tials are

V1(r;A) = A2 −A

(
A+

βh̄√
2µ

)
sech2βr ,

V2(r;A) = A2 −A

(
A− βh̄√

2µ

)
sech2βr . (13)

Clearly, one can write

V2(r;A) = V1(r;A− βh̄√
2µ

) +A2 −
(
A− βh̄√

2µ

)2

, (14)

which is precisely the requirement of eq. (7) for shape
invariance. Therefore the bound-state energies of the po-
tential V1 are [15],

E
(n)
1 =

n∑
k=1

R(ak) = A2 −
(
A− n

βh̄√
2µ

)2

, (15)

where R (a1) = a2
1 − a2

2 with a1 = A and a2 = f(a1) =
A− βh̄/

√
2µ.

The energy levels E(n) of the original potential given
by eq. (11) can be obtained by subtracting A2 from E

(n)
1

and identifying

V0 = A

(
A+

βh̄√
2µ

)
. (16)

Solving for A and requiring A > 0 gives

A = − βh̄

2
√
2µ

+
1
2

√
β2h̄2

√
2µ

+ 4V0 . (17)

Therefore, the energy levels of the deep potential V (r) =
−V0 sech2βr are

E(n) = E
(n)
1 −A2 = −

(
A− nβh̄√

2µ

)2

, (18)

which is well known to be the correct answer [16]. As we
deal with the bound systems, we require the odd solutions
due to boundary conditions. Hence replacing n in eq. (18)
by 2n+ 1 term, we arrive at

E(n) = − h̄2

2µ
(Ã− 2n− 1)2β2, n = 0, 1, 2, ... , (19)

where Ã = A

(h̄β/
√

2µ) . The depth of the potential given by

eq. (16) reduces in this case to the form

Ṽ0 = − h̄2

2µ
Ã(Ã+ 1)β2 . (20)

Equations (19) and (20) are in the same form as the
expressions used in ref. [7] where also the analytical ex-
pressions for the wave functions of the ground and first
excited state corresponding the potential of interest can
be found.

We have first employed this deep sech-squared poten-
tial in analyzing the alpha-alpha scattering (but this is not
discussed here) by choosing the two parameters as Ã =
5.945 and β = 0.535 fm−1, together with h̄2

2µα-α
= 10.375

MeV fm2. We have observed that −V0 sech2βr → −U0

exp(−αr2) with U0 = 122.694 MeV, α = 0.22 fm−2 and
have reproduced successfully figs. 1,2 of ref. [1] using this
two-parameter shape invariant superdeep potential, with-
out involving a Gaussian-type potential in the calcula-
tions. However, as we deal with 11Be(p,d)10Be reaction
calculations throughout the present work, we focus on the
treatment of deuteron and 11Be ground-state wave func-
tions in the supersymmetric quantum-mechanical frame-
work.
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Fig. 1. a) Superdeep potential V1(r) (solid line) for the
deuteron system and its supersymmetric partners V2(r) (non-
PEP, dotted line) and V3(r) (PEP, dashed line) as a function
of radius r. b) Comparison of the n-p central potential of the
superdeep sech-squared V1(r) (solid line) potential and its PEP
potential V3(r) (dashed line) with the central Reid Soft Core
(dotted line) interaction.

3 Application to the deuteron system

All the available “realistic” nucleon-nucleon forces are
characterized by a relatively weak central attractive part
and by the presence of a hard or soft repulsive core at
small distances; the first feature reflects the loose bind-
ing of the neutron-proton system, while the introduction
of a repulsive core is required by the negative values as-
sumed by the low-experimental phase-shifts when energy
increases. However the feasibility of a description of com-
parable quality of the low-energy properties of the two-
nucleon system in the 1S0 and 3S1 - 3D1 channels (includ-
ing deuteron properties), in terms of a deep, purely attrac-
tive interaction called Moscow potential was demonstrated
by Kukulin and his co-workers [14]. Their potential differs
from those obtained in the more traditional approaches
by the existence of an additional deeply bound state in
each channel, and by an increase of the absolute singlet
and triplet phase-shifts due to this extra unphysical bound
state. It is well known from cluster nuclear physics that

Fig. 2. The first two eigenstates, n = 0 for the ground-state
(solid line) and n = 1 for the first excited state (dotted line)
of the original Hamiltonian with the superdeep two-parameter
potential for the deuteron. The wave function illustrated by
dashed line represents the ground-state of the SUSY PEP,
V2(r).

these seemingly contradictory features — that is, repulsive
core versus deep potential descriptions — are two ways to
simulate the effects of the Pauli principle in a local poten-
tial model description when the two interacting particles
are composed of identical fermions. There have been quite
a few attempts to derive the features of the two-nucleon
interaction from a quark picture of the nucleon. The most
non-relativistic quark model calculations led to an effec-
tive nucleon-nucleon interaction with a strong repulsive
core and an intermediate range attraction similar to those
displayed by the empirical potentials. On the other hand,
the work described in ref. [14] indicated, for the nucleon-
nucleon scattering, that the relative s-wave function has
to have a node at small distance. The existence of a node
in the relative motion wave function can be readily in-
corporated in a local potential description, provided the
interaction is deep enough to accommodate one (nodeless)
deeply bound state, such as the one proposed by Kukulin
and his co-workers. The work described here will, in addi-
tion to the other investigations undertaken, demonstrate
explicitly the equivalence of such deep potentials with the
more orthodox repulsive core empirical interactions, by
constructing the phase-equivalent supersymmetric part-
ner of the deep potential once it has been freed from un-
physical bound states but still binding the deuteron with
correct energy. The resulting supersymmetric potential for
the deuteron case is shown to have a short-range repulsive
core followed by a shallow attractive part, which are very
similar to those displayed by realistic interactions such as
the Reid soft-core potential [17].

3.1 Phase-equivalent potentials for the deuteron

Now, superdeep potentials such as the Moscow poten-
tial give deuteron wave functions with a node at short
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distances. The node arises because there is an addi-
tional bound state which is Pauli forbidden for the ac-
tual neutron-proton (n-p) system. The latest version of
Moscow potential [14] includes both central and a tensor
component, together with the central and tensor one-pion
exchange contributions (OPEP). In addition, the equa-
tions to solve in the case of triplet potential — both for the
bound state and the scattering problem — are the more
complicated coupled equations. For simplicity, in present
calculations we use an alternative superdeep potential dis-
cussed in section 2.1, which produces a model deuteron
wave function that has a node like the Moscow potential.
However, this simple potential does not have the required
OPEP tail and do not consider D-wave related to the ten-
sor potential. So the physical observables calculated by
this potential, such as the radius of the deuteron which
we will deal with later in this section, should not be com-
pared with the experimental value. We note at this point
that our aim here is not the rigorous reproduction of ex-
perimental data but to test the reliability of a deep po-
tential description involving unphysical bound states. For
this reason, the use of an appropriate simple potential,
such as the binary sech-squared potential, in the present
analysis does not cause any physical problem.

Considering the well-known charge radius formula

R2(charge) =
1
2
R2

p +
1
4
R2

rms (21)

with Rp being the proton radius and Rrms the mean-
square intercluster distance (matter radius), one can de-
termine the free parameters Ã and β for the potential
considered in analyzing the deuteron nucleus by solving
the following system equations:{

E(n) = − h̄2

2µn-p
(Ã− 2n− 1) = −2.226MeV ,

R2
rms =

1
4

∫
drr2Ψ (n)

m (Ã, β, r)2 = (1.95 fm) ,
(22)

where n denotes the energy level as stated earlier and m
refers to m-th Hamiltonian. Throughout our calculations,

h̄2

2µn-p
is set 41.47MeV fm2 and the arbitrary constants Ã

and β, for the Moscow-type binary potential, are calcu-
lated as 3.146 and 1.587 fm−1, respectively. In this case,
from eq. (22), the ground-state has a binding energy of
about 481 MeV, which is unphysical and needs to be sup-
pressed. The physically meaningful deuteron bound state
for this superdeep potential corresponds to the first ex-
cited state having a binding energy of 2.226 MeV.

The building of the partner of a given potential ad-
mitting the same eigenvalues except for that of the miss-
ing ground-state has been discussed in section 2. The
two-parameter superdeep potential, V1(r), and its phase-
equivalent supersymmetric partner, V3(r), together with
the intermediate non–phase-equivalent potential, V2(r),
are shown in fig. 1a, and their corresponding wave func-
tions in fig. 2. As a result of the presence of one spurious
bound state, the deuteron wave function for the superdeep
potential possesses one node near the origin (around 0.56
fm). Figure 1b compares the phase equivalent repulsive
core interaction (V3) with the central part of the usual

realistic Reid soft-core potential [17]. The general futures
of the PEP (such as the radius of the repulsive core and
the strength of the attractive part) are seen to be similar
to those of the Reid soft core potential. In spite of dif-
ferent analytical behavior near the origin for both Reid
Soft core interaction (behaves at r → 0 as e−(const×x)/x)
and the transformed phase equivalent shallow potential
(V3(r)r→0 ≈ (const/r2)), we observe in the figure a consid-
erable similarity of both interactions. This means we have
very tight interrelation between a deep nucleon-nucleon
model potential and the standard Reid soft-core interac-
tion, which will be discussed later in this section.

It is seen from fig. 2 that our reconstructed phase-
equivalent supersymmetric partner potential (V3) has led
to relative motion wave functions very similar to the ones
generated by the deep potential (V1) outside the core re-
gion, but which lack the small distance radial node result-
ing from the suppression of the unphysical bound state. If
there is a node in the wave function and the wave func-
tion is reasonably large at small distances, then one might
expect that because of the normalization the wave func-
tion at large distances would be reduced. In other words,
the asymptotic phase-equivalent wave function will have a
smaller value of the asymptotic amplitude and hence the
radius will be reduced. To clarify if these wave functions
having different behavior inside the core lead to quantita-
tively different results, we investigate the dependence of
radius calculations, as an observable, on the wave function
properties.

The deuteron matter radius Rrms can be calculated
numerically from eq. (22) for either Ψ(r) = Ψ

(n=1)
1 (r) or

Ψ(r) = Ψ
(n=0)
3 (r), the bound-state wave functions for the

superdeep and transformed partner potentials. The nu-
merical calculations of rms radius value show that the
radius of deuteron is 1.953 fm and 1.955 fm for the
superdeep potential and PEP respectively, which are so
close. Therefore as a physical quantity, the radius calcu-
lated using the wave functions having one-/no-node re-
flects the nodal structure rather weakly. But, in case of
experiments requiring a reduction in Rrms for a nucleus,
a short-range contribution to the potential, such as the
superdeep potential used here, appears to be necessary.

In order to check the accuracy of the supersymmet-
ric quantum-mechanical methods used in constructing the
phase-equivalent potential, we have carried out additional
calculations on the phase-shift. The resulting phase-shift
curve obtained by PEP (V3(r)) is compared with that ob-
tained by the deep (V1) potential and an excellent agree-
ment between the resulting and initial phase-shifts is ob-
served.

To summarize, when nucleons are endowed with quark
structures, nucleon-nucleon bound and scattering proper-
ties can be described by a deep potential (≈ 1000 MeV),
whose supersymmetric partner potential is singular and
looks teasingly like the nucleon-nucleon Reid soft-core or
similar shallow potentials. This very interesting aspect
is connected with very deep interrelation between many-
body and potential treatment for the composite particle
interaction in case of the particles composed of elementary
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fermions. In fact, in non-relativistic quantum mechanics
which is used for the treatment of interaction of the com-
posite particles, the relative motion of the composites is
treated as a bosonic degree of freedom (i.e., no Pauli prin-
ciple constrains are put to the relative motion). On the
other hand, the internal excitations of the quark degrees
of freedom inside the composites in the process of the mu-
tual collision of the composites should be treated as the
manifestation of fermionic degrees of freedom. The main
problem in description of composite particle interaction is
the complicated interrelation between relative motion of
the composites and their inner excitations. And from this
point of view, the existence of the above supersymmetry
aspect could mean that the collision of such composites
should be described correctly only within the framework
of supersymmetrical quantum mechanics and is only the
projection of this nontrivial picture onto mutual relative
motion of the composites.

As a conclusion, by means of supersymmetric quan-
tum mechanics we have found that the two-parameter su-
perdeep potential and its supersymmetric partner, which
is phase-equivalent to the former and freed from the un-
physical deeply bound states, give very similar rms radius
values for the deuteron system. Although the correspond-
ing eigenstates differ in the node-number, our investiga-
tions have shown that the matter radius calculations us-
ing these wave functions reflect the nodal structure rather
weakly. This lends support to two nearly equivalent treat-
ments of the Pauli principle by choosing the physical so-
lution either by node-number criteria or by inclusion of a
repulsive part of the potential at the origin. However, the
similar rms radius results obtained do not automatically
imply that other observables such as differential cross-
sections, vector analyzing powers calculated using these
wave functions have to coincide. Clearly considerable ad-
ditional work is still needed to test further the virtues of
a deep potential description of the nucleon-nucleon inter-
action, which will be discussed in detail in section 5 con-
sidering a halo transfer reaction. However, as the 11Be nu-
cleus in the entrance channel of the reaction considered is
weakly bound, like the deuteron in the exit channel, a sim-
ilar discussion for the 11Be system being one-neutron halo
nucleus within the framework of supersymmetric quantum
mechanics is necessary before proceeding.

4 Application to the 11Be system

Research with radioactive nuclear beams is currently one
of the most active areas in nuclear physics. As one of
the successful applications of such nuclear beams, ex-
otic structures have been observed in nuclei near to the
driplines, which are called the neutron halo. These nu-
clei have opened studies of weakly bound nuclear systems,
which have not been freely accessible before. These nuclei,
such as 11Be, have long-range wave functions and are char-
acterized by a cloud, or halo, of neutron probability that
extends far beyond the dense core. According to classi-
cal physics such nuclei should not exist at all because the
strong nuclear force (the glue that binds neutrons and

protons together) has a too short range to hold the far off
neutrons in the halo. Instead, they owe their existence to
quantum theory which describes the location of subatomic
particles by a mathematical cloud of probability. In [18]
and references therein essential features of loosely bound
systems, having an unusually large size, are discussed. In
this section, as an example of halo systems, we examine
the ground-state of 11Be, which consists of a single neutron
halo with a 10Be core nucleus, using the supersymmetric
quantum mechanics. It is well known that the dominant
component of the 11Be ground-state is produced by the
coupling of a 1s1/2 neutron, which has a separation en-
ergy of 0.503 MeV, to a 10Be core.

4.1 Phase-equivalent potentials for the 11Be system

In this analysis, which will be restricted to the s-motion
only, we again make use of the sech-squared deep potential
with appropriate physical parameters. At this stage we
should stress that one can relate the matter root-mean-
square radius RRMS(matter) to the single neutron root-
mean-square radius Rrms by the formula [18]

R2
RMS(matter)=

W

(W+1)
R2

RMS(core)+
W

(W+1)2
R2

rms,(23)

where W is the mass number of the core, here the
10Be nucleus. Using [7] the RRMS(core) = 2.3 fm and
RRMS(matter) = 2.73 fm, it is easy to check that the
value Rrms = 6.70 fm gives roughly the average of the
measured values of RRMS(matter).

To determine the two free parameters (Ã, β), one needs
to solve the following equations leading to the correct rms
radius value and binding energy for the 11Be system,

{
E(n) = − h̄2

2µ (Ã− 2n− 1) = −0.503MeV ,

R2
rms =

∫
drr2Ψ (n)

m (Ã, β, r)2 = (6.70 fm) ,
(24)

where µ is the reduced mass of the system: 10Be + n.
The physical solution is chosen using the node-number

and parity quantum number criteria. As we take into ac-
count that the 0s1/2 orbit is completely occupied and put
the single neutron in the 1s1/2 state (which has one node
in the wave function) in order to have the positive parity
required by the experiment, we choose the excited-state
wave function with one node, instead of the ground state,
as a physically meaningful solution for the superdeep po-
tential in analyzing the ground-state of 11Be nucleus.

Now we are ready to apply the supersymmetric tech-
nique to create the PEP corresponding to the sech-squared
superdeep potential for the 11Be one-nucleon halo system,
with the calculated values of Ã = 3.124, and β = 0.694
fm−1 together with h̄2

2µ = 22.81 MeV fm2. Using the for-
mulae given by the previous sections, the supersymmet-
ric partner potentials and corresponding eigenstates are
calculated. Figure 3 illustrates the superdeep and related
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Fig. 3. The same as fig. 1a, but calculations have been carried
out for the 11Be system.

partner potentials, while fig. 4 gives their respective eigen-
states. It is seen from fig. 4 that the eigenfunction corre-
sponding to the PEP is a nodeless ground state. In this
case the Pauli principle is taken into account by the re-
pulsive part of the potential, see fig. 3, repulsive up to 1.5
fm approximately.

If one calculates the Rrms for the system of interest us-
ing the nodeless eigenstate of PEP, the value of 6.78 fm is
obtained. In spite of the fact that the wave functions dif-
fer in the node number, like the deuteron case discussed
in section 3, the Rrms is nearly the same for the phase-
equivalent potentials, which is found to be about 6.70 fm
for the initial deep potential and 6.17 fm for the inter-
mediate non-phase-equivalent potential. One should not
forget that the non-PEP potential does not belong to the
PEP family, that is why the corresponding Rrms values
is so close for the PEP potentials while that of non-PEP
considerably differ than the others. Moreover, the corre-
sponding eigenfunction of this non-PEP potential has a
different asymptotic behavior as well.

We have also calculated the s-wave phase shifts in case
of 10Be(d,p)11Be elastic scattering up to 20 MeV for the
three potentials. The results clearly exhibit the difference
between PEP and non-PEP.

5 Application to the 11Be(p, d)10Be reaction
at 35 MeV

Single nucleon transfer reactions, such as the (d,p) and
(p,d) reactions, have been a reliable tool in nuclear spec-
troscopic studies of stable nuclei, determining positions,
spins and parities of nuclear states. Recently, the use of
low-energy single-nucleon transfer reactions for structure
studies of exotic nuclei have attracted attention [19,20].
Because of the simplicity of the theoretical interpretation
of these reactions, they are thought to provide an impor-
tant source of information about the structure of halo nu-
clei, such as 11Be. It is now understood that the 1s1/2

neutron single-particle state in this region is lowered and

Fig. 4. The 11Be ground-state radial wave functions

Ψ
(n=1)
1 (Ã, β, r) (solid curve), Ψ

(n=0)
2 (Ã, β, r) (dotted curve)

and Ψ
(n=0)
3 (Ã, β, r) (dashed curve) all normalized to one.

that a dominant component of the 11Be ground-state is
produced by the coupling of a 1s1/2 neutron to a 10Be
(g.s., 0+) core; with a smaller but significant component
in which a 0d5/2 neutron is coupled to a 2+ excitation of
the 10Be core.

The importance of such transfer reaction spectroscopic
studies of the inclusion of the deuteron breakup degrees
of freedom has been well discussed in ref. [20] via the the-
ories used to analyze measured cross-section observables,
and shown that the magnitudes of the calculated cross
sections, and particularly the ratio of the cross-sections to
the ground state and 2+ core states, of 10Be are affected
by the inclusion of three-body channels.

Here in this section we do not discuss the details of
these calculations. The aim of the present calculations is
to investigate how the calculated physical observables of
the reaction are sensitive to the nodal structure, involving
the deuteron and bound neutron wave functions discussed
in the previous sections with one node/no node.

We calculate the transfer amplitude using the prior
form of the (p,d) matrix element, thus the transition in-
teraction is the n-p interaction and we need a full (three-
body) description of the n+p+10Be system in the fi-
nal state. For the description of this final state we have
used both the adiabatic (AD) model [21] and the quasi-
adiabatic (QAD) approach [22]. However, for the sake of
clarity in discussing the physics behind this application,
we here consider only the AD model calculations as both
model have led us to the same conclusion.

In the context of (p,d) reactions the outgoing deuteron
wave function, Ψd, enters the transition amplitude

Tpd =
〈
Ψd(r,R)

∣∣Vnp |χp(rp)φn(rn)〉 , (25)

where r (= rp − rn) is the relative coordinate of the n-p
pair and R

[
= 1

2 (rp + rn)
]
is the center-of-mass coordi-

nate. Here φn is the neutron bound state and χp the in-
coming proton wave function. The vectors rn and rp are
the positions of the transferred neutron with respect to
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the 10Be core and of the proton relative to the 11Be sys-
tem. The cross-section (in the center-of-mass frame) for
neutron pickup to bound n-p pair is then given by

dσpd

dΩf
=

µiµf(
2πh̄2

)2

kf

ki
|Tpd|2 , (26)

where dΩf is the element of the solid angle for the asymp-
totic center-of-mass momentum of the bound deuteron. In
the above µi and µf are the center of mass relative motion
reduced masses in the initial and final channels, ki and kf

are the entrance and exit channel wave numbers, respec-
tively. Throughout this paper we restrict the formalism to
s-wave n-p relative motion for simplicity. In the zero-range
approximation, then it is the wave function at coincidence,
Ψd

(
r ≈ 0, R

)
which is of importance.

5.1 Transition amplitudes in zero-range approximation

It is important for the present work to make clear the
essential differences in the calculations carried out us-
ing both phase-equivalent potentials (the initial superdeep
sech-squared potential and the shallow phase-equivalent
partner potential) for the calculation of the ground-state
deuteron wave function in the final state and of the trans-
ferred neutron bound-state wave function in the initial
channel of the reaction. Therefore they are developed in
some detail within a common notation. The calculation
employing the deep potential (denoted by V1 in sections
2 to 4) will be represented by the script deep in the fol-
lowing formulae and for the phase-equivalent shallow po-
tential (represented by V3 before) calculations we use the
script pep.

The transition amplitudes for the processes are evalu-
ated in a zero-range approximation, and the related rel-
ative amplitudes, of primary interest here, are accurately
described. For clarity we will not show the transferred
neutron spectroscopic factor or any spin projection labels
explicitly.

In the adiabatic approximation the required transition
amplitudes are

T
deep(pep)
pd =〈
χd(r,R)Φ

deep(pep)
d (r)

∣∣∣V deep(pep)
np (r)

∣∣∣χp(rp)φdeep(pep)
n (rn)

〉
.

(27)

As in calculating the transfer amplitudes, we make
use of the zero-range approximation, thus for the bound
deuteron we replace

V deep(pep)
np (r)χd(r,R)φ

deep(pep)
d (r) ≈

D
deep(pep)
0 (p,d)χd(r ≈ 0, R)δ(r) (28)

with strength parameters

D
deep(pep)
0 (p,d)=

√
4π

∫
drrV deep(pep)

np (r)udeep(pep)
0 (r),(29)

where u0 is the radial deuteron ground-state wave func-
tion (�np = 0) such that Φd(r) = 1√

4π

u0(r)
r . The similar

replacement should also be done for the QAD calculations.
It follows that,

T
deep(pep)
pd = D

deep(pep)
0 (p,d)Mdeep(pep)(p,d)

=Ddeep(pep)
0 (p,d)

〈
χd(r≈0, R)

∣∣χp(γR)φdeep(pep)
n (R)

〉
,(30)

where γ = W
W+1 . Finally, considering the general expres-

sion for the cross-section, we obtain

dσdeep(pep)
pd

dΩf
=

µiµf(
2πh̄2

)2

kf

ki
D2

0(deep, pep)
∣∣∣Mdeep(pep)(p,d)

∣∣∣2
(31)

for the calculations used the adiabatic model in describing
the final state.

5.2 Calculation methods

We calculate the cross-section angular distributions for
the 11Be(p,d)10Be single nucleon transfer reaction lead-
ing to the 0+ ground-state (1s1/2 neutron transfer) of
10Be. We perform zero-range calculations using a mod-
ified version of the program TWOFNR [23]. The pro-
gram has been further modified so that the calculated
adiabatic and quasi-adiabatic radial wave functions, and
appropriate zero-range strengths calculated for the phase
equivalent deep and shallow potentials by eq. (41), can
be read in, together with the transferred neutron bound
state φn obtained using the superdeep sech-squared po-
tential and its phase-equivalent partner. In the three-body
model calculations of the deuteron channel wave function
(d +10 Be), we make use of the global optical potential
parameter set of Bechetti and Greenlees [24] evaluated
at half the final state center of mass energy. The spin-
orbit interactions are included. The entrance channel pro-
ton optical potential parameters are taken from [24]. The
spin-orbit force in the proton channel is fixed at 6 MeV.
The radial integrals are carried out from 0 to 35 fm in
steps of 0.1 fm. The maximum number of partial waves
used was 30 for both the entrance and exit channels. The
spectroscopic factors are set to unity throughout the cal-
culations. All calculations presented here are done without
non-locality corrections. Such corrections for halo transfer
are expected to be small because they correct the transi-
tion amplitude in the nuclear interior, but the long tail of
the halo wave function makes internal contributions less
important.

5.3 Results and discussion

It is useful at this stage to remind ourselves again that
the deep potential and its phase equivalent shallow part-
ner, which are used for calculating the bound deuteron
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Fig. 5. Calculated differential cross-section angular distribu-
tions within the adiabatic model for the 11Be(p, d)10Be (g.s.)
reaction at 35 MeV using the deep and shallow (PEP) two-
body potential descriptions for the weakly bound deuteron and
11Be nuclei.

and transferred neutron wave functions, are constructed
to have identical phase shifts so that any difference in the
transition amplitudes, and in the cross-section angular dis-
tributions, is attributed entirely to the corresponding wave
functions of the partner potentials.

The result for the adiabatic model cross-section an-
gular distributions for the reaction involving the original
deep potential description and its comparison with that
obtained by means of the PEP description is given in
fig. 5. The figure indicates almost complete coincidence
of both curves. This may be understood from the follow-
ing analysis. The two-body supersymmetric partner po-
tential dependence in the differential cross-section calcu-
lations, originates from two terms: the zero-range constant
D2

0, and the transition amplitude |M(p,d)|2 through the
deuteron and bound neutron ground-state wave functions.
The calculated transfer strengths, for the deep potential
description of the n-p interaction is D2

0(deep) = 15792
MeV2fm3, while D2

0(pep) = 15980 MeV2fm3 for the shal-
low partner description. It is also worth stressing that,
from the results obtained in sections 3 and 4, the transi-
tion from the deep potential to the repulsive core interac-
tion (PEP) does not significantly alter the outer part of
the neutron ground-state wave functions appearing in the
transition amplitude. And in addition, the neutron halo
wave function makes internal contribution less important.
Therefore

∣∣Mdeep(p, d)
∣∣2 ≈ |Mpep(p, d)|2, and the ratio of

the cross-sections

dσdeep
pd

dΩpep
pd

≈ D2
0(deep)

D2
0(pep)

=
15792MeV2fm3

15980MeV2fm3
(32)

= 0.988 ≈ 1 ,

which leads to the coincidence of the results.

6 Conclusion

The properties of the deep nuclear interaction have been
investigated by constructing explicitly phase-equivalent

potentials freed from the unphysical deeply bound states
of the former. We have seen that the resulting central po-
tentials have to be repulsive and singular at small dis-
tance in order to preserve the energy behavior of the phase
shifts, and they present a shallow attractive part of inter-
mediate range. Our reconstructed potentials (PEP) have
led to relative motion wave functions very similar to those
generated by the deep potentials outside the core region,
but which lack the small distance radial node. Both types
of potentials are therefore expected to display rather dif-
ferent off-shell behaviors, and presumably lead to qualita-
tively different results. However, no considerable discrep-
ancy has been found between the rms radii calculated from
these quite different two-body interactions. Nevertheless,
if the experiment actually does require a reduction in ob-
servables then a short range non-local contribution to the
potential, like the deep potential, appears to be necessary.

We have used phase equivalent two-body potentials
with a different number of bound states considering the
11Be(p,d)10Be reaction at 35 MeV, and compared the cal-
culated corresponding physical observables. Investigation
of the consequences of using these completely phase equiv-
alent two-body potentials for the description of weakly
bound deuteron and 11Be nuclei in three-body calcula-
tions, based on the adiabatic approach has led us to al-
most indistinguishable results. Due to the large spatial
extension of halos, involving the simplest halo nucleus
the deuteron and 11Be as a one-neutron halo system, the
probability is by definition very small at small distances.
Hence, we conclude that the short-range behavior of the
corresponding wave functions for the deep and phase-
equivalent shallow potentials, which coincide at large dis-
tances but differ at small distances by the additional node
appearing inside the core by use of the deep potential, is
not significant for the analysis of such reactions.

In sum, the supersymmetric formulations used through
the present calculations have dealt in general with the
Pauli principle for the weakly bound systems. Assuming
that the two-body potentials have Pauli forbidden states,
one can then construct easily and use the phase equiva-
lent partners without these forbidden states. At small dis-
tances the lowest levels of the original deep potentials cor-
respond to identical fermions occupying the same states.
Removal of these terms therefore forces the particles to
occupy higher-lying orbits and thereby introducing the
necessary repulsion preventing violation of the Pauli prin-
ciple. In conclusion, this method to exclude the Pauli for-
bidden states in the weakly bound systems has firm math-
ematical and numerical foundations. It is a practical and
accurate alternative to the other existing methods, such
as the work described in ref. [25] where an analytical s-
wave potential with one bound state, which is the most
important case in the practical applications for halo states,
has been introduced. We note that the application of this
potential, with the appropriate choice of the parameters
involved, to the weakly bound deuteron and 11Be nuclei
has led to results similar to those obtained by the shallow
supersymmetric phase-equivalent partner potentials.
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